0 Daumen
703 Aufrufe

Gegeben ist das Dreieck, welches durch die Punkte/Vektoren P \( \begin{pmatrix} 5\\(25/13)\\(57/13) \end{pmatrix} \) , B \( \begin{pmatrix} 3\\4\\3 \end{pmatrix} \) und C \( \begin{pmatrix} 7\\4\\3 \end{pmatrix} \) bestimmt wird.

Ermitteln Sie eine Gleichung in Koordinatenform.


So, meine Idee war es jetzt erstmal, mir diese über die Parameterform herzuleiten, also:

E: \( \vec{x} \) = \( \vec{OB} \) + r * \( \vec{BP} \) + s* \( \vec{BC} \) , r,s ∈ ℝ

E: \( \begin{pmatrix} 3\\4\\3 \end{pmatrix} \) + r* \( \begin{pmatrix} 2\\(-27/13)\\(18/13) \end{pmatrix} \) + s* \( \begin{pmatrix} 4\\0\\0 \end{pmatrix} \)


Habe dann das Kreuzprodukt aus den Richtungsvektoren gebildet, um den Normalenvektor zu erhalten:

\( \vec{nE} \) = \( \begin{pmatrix} 0\\(-72/13)\\(108/13) \end{pmatrix} \)


Folglich müsste die Koordinatengleichung E: \( \frac{-72}{13} \) x2 + \( \frac{108}{13} \) x3 = b lauten, die Lösungen sagen aber E: 2x2 + 3x3 = b


Wo liegt der Fehler?


Frohe Ostern übrigens ((:

Avatar von

Erweitere die Gleichung mit -13/36.

1 Antwort

0 Daumen

\( \vec{n_E} \) = \( \begin{pmatrix} 0\\(-72/13)\\(108/13) \end{pmatrix} \) muss heißen:

\( \vec{n_E} \) = \( \begin{pmatrix} 0\\(72/13)\\(108/13) \end{pmatrix} \).

Hier kann man noch einen gemeinsamen Faktor herausziehen

Avatar von 124 k 🚀

also im Prinzip kein ,,Fehler", sondern nur nicht zu Ende gerechnet?

Doch, ein Vorzeichenfehler in der zweiten Komponente.

Ein anderes Problem?

Stell deine Frage