0 Daumen
889 Aufrufe

Hallo ich komme bei folgender Aufgabe nicht weiter und würd mich freuen, wenn mir jemand helfen könnte!

Sei $$P_2:= \left\{p:R\rightarrow R | p(x) = ax^2+bx+c | a,b,c \in R\right\}$$ der Vektorraum der Polynome von Grad höchstens 2. Bilden die Funktionen

p1(x) = x² + 1

p2(x) = x² - x

Eine Basis des P2 ?


Mein Ansatz:

In einer Basis sind die Vektoren ja alle linear unabhängig oder?

Also

λ1(x²+1) + λ2(x²-x) = 0


Aber wie zeige ich das nun?

Avatar von

1 Antwort

0 Daumen

Hallo

die 2 Vektoren sind linear unabhängig, denn λ1(x²+1) + λ2(x²-x)=0

(λ1+λ2)*x2-λ2*x+λ1=0  kann man ja für viele λ lösen, aber für jedes Paar gilt das nur für 0,1,2 x und nie für alle x

also sind die 2 linear unabhängig, könnten also Basisvektoren sein, allerdings bilden sie keine Basis , denn der Raum ist ja 3d und da reichen 2 Basen nicht, man könnte mit  einem dritten  z. N. p3= x oder pr =1 ergänzen.

erst dann wäre es eine Basis.

Gruß lul

Avatar von 108 k 🚀

Da muss ich doof nachfragen: Wie kommt man denn auf

(λ1+λ2)*x2-λ2*x+λ1=0 

Hallo

di von dir gegebene Gleichung : Klammern auflösen, Terme mit x2 zusammenfassen.

lul

Ugh ja okay. -.- Mir dreht sichs langsam nur noch im Kopf. :D

Also wäre das bereits der fertige Beweis für die lineare unabhängigkeit?

ja, aber die Frage war ja ob es eine Basis ist.

lul

Ein anderes Problem?

Stell deine Frage