0 Daumen
537 Aufrufe

Aufgabe:

Ich verstehe eine Umformung in einer Rechnung nicht.

Wie komme ich von:

(x1)2+y24(x2+(y1)2)(x-1)^2+y^2\geq 4*(x^2+(y-1)^2)

auf:

(x+13)2+(y43)289(x+\frac{1}{3})^2+(y-\frac{4}{3})^2 \leq \frac{8}{9}


Danke für die Hilfe:)

Avatar von

2 Antworten

0 Daumen
 
Beste Antwort

(x1)2+y24(x2+(y1)2)ausmultiplizierenx22x+1+y24x2+4y28y+4x2+2xy2433x2+2x+3y28y : 31x2+23x+y283y+(13)2+(43)289x2+23x+(13)2+y283y+(43)2binomische Formel89(x+13)2+(y43)2\begin{aligned}\left(x-1\right)^{2}+y^{2} & \geq4\left(x^{2}+\left(y-1\right)^{2}\right) & & \text{ausmultiplizieren}\\x^{2}-2x+1+y^{2} & \geq4x^{2}+4y^{2}-8y+4 & & |-x^{2}+2x-y^{2}-4\\-3 & \geq3x^{2}+2x+3y^{2}-8y & & |:3\\-1 & \geq x^{2}+\frac{2}{3}x+y^{2}-\frac{8}{3}y & & |+\left(\frac{1}{3}\right)^{2}+\left(\frac{4}{3}\right)^{2}\\\frac{8}{9} & \geq x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}+y^{2}-\frac{8}{3}y+\left(\frac{4}{3}\right)^{2} & & \text{binomische Formel}\\\frac{8}{9} & \geq\left(x+\frac{1}{3}\right)^{2}+\left(y-\frac{4}{3}\right)^{2} & &\end{aligned}

Avatar von 107 k 🚀
0 Daumen

(x1)2+y24[x2+(y1)2] (x-1)^{2}+y^{2} \geq 4 \cdot\left[x^{2}+(y-1)^{2}\right]

x22x+1+y24[x2+y22y+1] x^{2}-2 x+1+y^{2} \geq 4 \cdot\left[x^{2}+y^{2}-2 y+1\right]

x22x+1+y24x2+4y28y+4 x^{2}-2 x+1+y^{2} \geq 4 \cdot x^{2}+4 y^{2}-8 y+4

4x2+4y28y+4x22x+1+y2x2 4 \cdot x^{2}+4 y^{2}-8 y+4 \leq x^{2}-2 x+1+y^{2} \mid-x^{2}

3x2+4y28y+4x22x+1+y2y2 3 \cdot x^{2}+4 y^{2}-8 y+4 \leq x^{2}-2 x+1+y^{2} \mid-y^{2}

3x2+3y28y+42x+1+2x4 3 \cdot x^{2}+3 y^{2}-8 y+4 \leq-2 x+1 \mid+2 x-4

3x2+2x+3y28y3 : 3 3 \cdot x^{2}+2 x+3 y^{2}-8 y \leq-3 \mid: 3

x2+23x+y283y1+ x^{2}+\frac{2}{3} x+y^{2}-\frac{8}{3} y \leq-1 \mid+ quadratische Ergänzungen (13)2+(43)2 \left(\frac{1}{3}\right)^{2}+\left(\frac{4}{3}\right)^{2}

(x+13)2+(y43)21+(13)2+(43)2 \left(x+\frac{1}{3}\right)^{2}+\left(y-\frac{4}{3}\right)^{2} \leq-1+\left(\frac{1}{3}\right)^{2}+\left(\frac{4}{3}\right)^{2}

(x+13)2+(y43)21+19+169=17999=89 \left(x+\frac{1}{3}\right)^{2}+\left(y-\frac{4}{3}\right)^{2} \leq-1+\frac{1}{9}+\frac{16}{9}=\frac{17}{9}-\frac{9}{9}=\frac{8}{9}

(x+13)2+(y43)289 \left(x+\frac{1}{3}\right)^{2}+\left(y-\frac{4}{3}\right)^{2} \leq \frac{8}{9}

Avatar von 42 k

Ein anderes Problem?

Stell deine Frage