0 Daumen
710 Aufrufe

Aufgabe:

Seien K ein Körper und f : V → W ein Homomorphismus von endlichdimensionalen K-Vektorräumen.

Zu zeigen ist, dass die Abbildung Vv → Ker(f)v, die einer Linearform λ: V → K ihre Einschränkung auf Ker(f) zuordnet, einen Isomorphismus Vv / Im(f^∨ ) ≅Ker(f )^∨ induziert.


Problem/Ansatz:

Mich verwirrt dieses v, ich habe mir schon ''normale'' Beweise angeschaut (Homomorphiesatz) aber ich verstehe nicht wie ich das hier ''umschreiben'' soll. Hätte vielleicht jemand einen Tipp?

Soll dann einfach ker(f)v stehn bleiben statt ker(f)?

Avatar von

1 Antwort

0 Daumen

Das \( ^v \) kennzeichnet duale Objekte:

$$ V^v = \{ g : V \to K ~|~ g \text{ linear}\} $$$$ \ker(f)^v = \{ g : \ker(f) \to K ~|~ g\text{ linear} \} $$$$ W^v = \{ h : W \to K ~|~ h \text{ linear}\} $$$$ f^v : W^v \to V^v, \varphi \mapsto \varphi \circ f $$
Zeige also, dass die Abbildung$$ \Psi : V^v \to \ker(f)^v, \psi \mapsto \psi|_{\ker(f)} $$- linear

- surjektiv

und dass

- \( \ker \Psi = \operatorname{im}(f^v) \)

ist. Die Inklusion \( \supseteq \) ist dabei trivial, die andere kann man sich je nach Vorwissen auch herleiten, indem man \( \dim \ker \Psi = \dim \operatorname{im}(f^v) \) zeigt. Das läuft auf \( \dim \operatorname{im}(f) = \dim \operatorname{im}(f^v) \) hinaus.

Avatar von 1,3 k

Ein anderes Problem?

Stell deine Frage