Aufgabe:
Berechnen Sie: \( \int\limits_{Q}^{} \) y · sin(xy) d(x,y) für Q:=[0,1] x [0,π]
Problem/Ansatz:
Was fängt man mit dem sin(xy) an? Habe jetzt schon so angefangen:
\( \int\limits_{0}^{1} \) \( \int\limits_{0}^{π} \) y · sin(xy) dy dx
= (\( \int\limits_{0}^{1} \)y dy) · (\( \int\limits_{0}^{π} \) sin(xy) dx)
Aloha :)
Du bist auf dem richtigen Weg, bist aber am Stolpern. Du kannst die beiden Integrale nicht faktorisieren, weil die Sinus-Funktion ja auch noch von \(y\) abhängt:
$$I=\int\limits_{x=0}^1\;\int\limits_{y=0}^\pi y\sin(xy)\,dx\,dy=\int\limits_0^\pi y\cdot\left(\int\limits_0^1 \sin(xy)\,dx\right)dy=\int\limits_0^\pi y\cdot\left[-\frac{\cos(xy)}{y}\right]_{x=0}^1 dy$$$$\phantom{I}=\int\limits_0^\pi y\left(-\frac{\cos(y)}{y}+\frac1y\right)dy=\int\limits_0^\pi \left(1-\cos(y)\right)dy=\left[y-\sin(y)\right]_0^\pi=\pi$$
Hallo
als Produkt geht das nicht! zuerst sin(xy)dx integrieren und die Grenzen einsetzen, dann nach y integrieren.
Gruß lul
Ein anderes Problem?
Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos