f(t)=0,6t2+2t
Dann muss t0β=3 sein, nicht x0β=3
fβ²(t0β)=hβ0limβh0,6β
(t0β+h)2+2β
(t0β+h)β0,6t02ββ2t0ββ
fβ²(t0β)=hβ0limβh0,6β
(t02β+2t0ββ
h+h2)+2β
t0β+2hβ0,6t02ββ2t0ββ
fβ²(t0β)=hβ0limβh0,6β
t02β+1,2t0ββ
h+0,6h2+2β
t0β+2hβ0,6t02ββ2t0ββ
fβ²(t0β)=hβ0limβh1,2t0ββ
h+0,6h2+2hβ=hβ0limβ(1,2t0β+0,6h+2)
fβ²(t0β)=(1,2t0β+2)
fβ²(3)=(1,2β
3+2)=5,6