Beweise es mit vollst. Induktion über n.
\(\prod \limits_{k=1}^{n}\left(1+x_{k}\right)>1+\sum \limits_{k=1}^{n} x_{k} \)
Anfang mit n=2 .
\(\prod \limits_{k=1}^{2}\left(1+x_{k}\right) = \left(1+x_{1}\right)\cdot\left(1+x_{2}\right)\)
\(   = 1+  x_{1}  +  x_{2}  +  x_{1} \cdot x_{2}  >1+x_{1}+x_{2}  = 1+\sum \limits_{k=1}^{2} x_{k} \)
weil die x'e alle positiv sind.
Ind.schritt:  Es gelte für n dann hat man
 \(\prod \limits_{k=1}^{n+1}\left(1+x_{k}\right)= \left(1+x_{k+1}\right)\cdot\prod \limits_{k=1}^{n}\left(1+x_{k}\right) \)
\( = \prod \limits_{k=1}^{n}\left(1+x_{k}\right) + x_{k+1}\cdot \prod \limits_{k=1}^{n}\left(1+x_{k}\right) \)
\( > 1+\sum \limits_{k=1}^{n} x_{k}  + x_{k+1}\cdot ( 1+\sum \limits_{k=1}^{n} x_{k} ) \)
\( = 1+\sum \limits_{k=1}^{n} x_{k} + x_{k+1} + x_{k+1}\cdot \sum \limits_{k=1}^{n} x_{k}  \)
\( = 1+\sum \limits_{k=1}^{n+1} x_{k} +  x_{k+1}\cdot \sum \limits_{k=1}^{n} x_{k}  \)
Und weil \(  x_{k+1}\cdot \sum \limits_{k=1}^{n} x_{k}  \) jedenfalls positiv ist, gilt auch
\( > 1+\sum \limits_{k=1}^{n+1} x_{k}  \)   q.e.d.