\(\frac{1}{R_{\text {ges }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}} | * R_{ges}\) 
\(   1 =  R_{ges} (\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}} ) | : (\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}} )\)
\(  \frac{1} { (\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}} )} =  R_{ges}  \)
Kann man was schöner machen, wenn man die drei im Nenner
auf den Hauptnenner bringt.
\( \displaystyle  \frac{1}{\frac{R_{2}R_{3}+R_{1}R_{3}+R_{1}R_{2} }{R_{1}R_{2}R_{3}  } }  =  R_{ges}  \)
und dann
\(  \displaystyle \frac {R_{1}R_{2}R_{3}  }{R_{2}R_{3}+R_{1}R_{3}+R_{1}R_{2} }   =  R_{ges}  \)