0 Daumen
229 Aufrufe

Aufgabe:

Die Funktion \( f \) mit \( f(x)=\frac{1}{2} x^{4}-x^{2}-1 ; x \in \mathbb{R} \), hat nur zwei Nullstellen. Eine Nullstelle liegt zwischen 1 und 2. Bestimmen Sie diese Nullstelle auf eine Dezimale gerundet. Geben Sie die zweite Nullstelle an. Begründen Sie Ihre Lösung.


Problem/Ansatz:

wie rechne ich das aus? Muss ich für x 1 und 2 setzen?

von

Die Aufgabenstellung lässt vermuten, dass die fragliche Nullstelle nicht exakt ermittelt werden soll, sondern numerisch z.B. mittels Intervallhalbierungsmethode (Bisektion). Kann das sein?

4 Antworten

0 Daumen

Hallo

du setzt x^2=y und löst die quadratische Gleichung, nur positive y führen dann zu den 2 Lösungen für x.

Gruß lul

von 99 k 🚀

Ich versteh nicht ganz, wie ich x2 zu y umwandeln soll.

Nicht umwandeln, sondern substituieren ist gemeint.

Das will lul sagen.

Meist nimmt man: x^2= z oder einen anderen Buchstaben, weil y nach Funktion klingt

Hallo

x^2=y, x^4=y^2

dann hast du 1/2y^2-y-1=0 zu lösen . Am Ende x=√y

Gruß lul

0 Daumen

1/4*x^4-x^2-1=0

x^4-4x^2-4 = 0| *4

x^2= z

z^2-4z-1=0

pq-Formel:

z1/2 = 2+-√(4+1)

z1= 2+√5

z2= 2-√5

x= +-√z

...

von 19 k

@ggT du hast die falsche Funktion benutzt

lul

Danke, ich habe es gerade gemerkt und korrigiert.

Warum schreibst du die Lösung fertig auf, statt zu warten ob Kitty mit dem Tip zurecht kommt.

lul

Welche dieser angeblichen Lösungen liegt denn zwischen 1 und 2 ?

@Arsinoé

die Frage verstehe ich nicht?

lul

"Die Funktion hat nur zwei Nullstelle"

und ist außerdem symmetrisch zur y-Achse!

@lul

In der Aufgabenstellung heißt es

Eine Nullstelle liegt zwischen 1 und 2. Bestimmen Sie diese...
0 Daumen

\( f(x)=\frac{1}{2} x^{4}-x^{2}-1 ; x \in \mathbb{R} \)

\( 0=\frac{1}{2} x^{4}-x^{2}-1 ~~~~~|\cdot2\)

\( 0=x^4-2x^2-2 ~~~~~~ x^2=z\)

\(0=z^2-2z-2\)

...

:-)

Bei Fragen fragen.

von 45 k
0 Daumen

f ( x ) = 1/2 * x^4 - x^2 -1
siehe monty
Nullstelle
1/2 * x^4 - x^2 -1 = 0 | * 2
x^4- 2x^2 - 2 = 0
x^4- 2x^2 + ( 1^2 ) = 2 + 1
substitution z = x^2
z^2 - 2 * z + 1 = 3

( z - 1 )^2 = √ 3
z -1 = ± √ 3
z (1) = +√ 3 + 1
z ( 1 ) = 1.732 + 1 = 2.732
x ( 1 ) ^2 = 2.732
x ( 1,1 ) = +1.653
x ( 1,2 ) = -1.653

z (2) = -√ 3 + 1
z ( 2 ) = -0.732

x ^2 =  √-0.732
keine Lösung

von 122 k 🚀
( z - 1 )^2 = √ 3

soll wohl  3 lauten

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community