0 Daumen
380 Aufrufe

Aufgabe:

Zeigen Sie, dass für z, w ∈ C und t ∈ R gilt:Screenshot_20231212_132342_Samsung Notes.jpg

Text erkannt:

eit1=2sin(t2) \left|e^{i t}-1\right|=2\left|\sin \left(\frac{t}{2}\right)\right|

Laut Satz 10.5a)(i) : eiz=cosz+isinz 10.5 \mathrm{a})(i): e^{i z}=\cos z+i \sin z
cost+isint1=2sin(t2) |\cos t+i \sin t-1|=2\left|\sin \left(\frac{t}{2}\right)\right|

Laut Def. 5.5 (ii): z : =a2+b2 |z|:=\sqrt{a^{2}+b^{2}}
cost+a2162sint1=2sin(t2) \left|\cos t+\sqrt{a^{2} 16^{2}} \cdot \sin t-1\right|=2\left|\sin \left(\frac{t}{2}\right)\right|

Lavt c1(iv)cost=12sin2(z2) c_{1}(i v) \cos t=1-2 \sin ^{2}\left(\frac{z}{2}\right)
12sin2(t2)+isint1=2sin(t2)2sin2(t2)+isint=2sin(t2)4sin4(t2)sin2t=4sin2(t2)2sin2(t2)2sin2(t2)sin2t=4sin2t2 \begin{array}{l} \left|1-2 \sin ^{2}\left(\frac{t}{2}\right)+i \cdot \sin t-1\right|=2\left|\sin \left(\frac{t}{2}\right)\right| \\ \left|-2 \sin ^{2}\left(\frac{t}{2}\right)+i \cdot \sin t\right|=2\left|\sin \left(\frac{t}{2}\right)\right| \\ \left|-4 \sin ^{4}\left(\frac{t}{2}\right)-\sin ^{2} t\right|=4\left|\sin ^{2}\left(\frac{t}{2}\right)\right| \\ \left|-2 \sin ^{2}\left(\frac{t}{2}\right) \cdot 2 \sin ^{2}\left(\frac{t}{2}\right)-\sin ^{2} t\right|=4\left|\sin ^{2} \frac{t}{2}\right| \end{array}
(C)2 (C)^{2}


Problem/Ansatz:

Kann mir jemand weiterhelfen?

Avatar von

2 Antworten

+1 Daumen

cost+isint1=2sin(t2) |\cos t+i \sin t-1|=2\left|\sin \left(\frac{t}{2}\right)\right|

<=> cost1+isint=2sin(t2) |\cos t - 1 +i \sin t|=2\left|\sin \left(\frac{t}{2}\right)\right|

<=> (cost1)2+sin2t=2sin(t2) \sqrt{ (\cos t - 1) ^2 + \sin^2 t }=2\left|\sin \left(\frac{t}{2}\right)\right|

alles nicht negativ, da kann ma quadrieren

<=> (cost1)2+sin2t=4sin2(t2) (\cos t - 1) ^2 + \sin^2 t =4\sin^2 \left(\frac{t}{2}\right)

<=> cos2t2cost+1+sin2t=4sin2(t2) \cos^2 t -2\cos t + 1 + \sin^2 t =4\sin^2 \left(\frac{t}{2}\right)

<=> 12cost+1=4sin2(t2) 1 -2\cos t + 1 =4\sin^2 \left(\frac{t}{2}\right)

<=> 22cost=4sin2(t2) 2 -2\cos t =4\sin^2 \left(\frac{t}{2}\right)   |:2

<=> 1cost=2sin2(t2) 1 -\cos t =2\sin^2 \left(\frac{t}{2}\right)

<=> 1cos(t2+t2)=2sin2(t2) 1 -\cos (\frac{t}{2}+\frac{t}{2}) =2\sin^2 \left(\frac{t}{2}\right)

Additionstheorem anwenden

<=> 1(cos2(t2)sin2(t2))=2sin2(t2) 1 - (\cos^2 (\frac{t}{2}) -\sin^2(\frac{t}{2}) ) =2\sin^2 \left(\frac{t}{2}\right)

<=> 1cos2(t2)+sin2(t2))=2sin2(t2) 1 - \cos^2 (\frac{t}{2}) + \sin^2(\frac{t}{2}) ) =2\sin^2 \left(\frac{t}{2}\right)

<=> sin2(t2)+sin2(t2))=2sin2(t2) \sin^2 (\frac{t}{2}) + \sin^2(\frac{t}{2}) ) =2\sin^2 \left(\frac{t}{2}\right)

                          BINGO!

Avatar von 289 k 🚀
0 Daumen

Vielleicht noch eine kürzere Lösung:

exp(it)1=exp(0.5it)exp(0.5it)exp(0.5it)=12sin(0.5t)|\exp(it)-1|=|\exp(0.5it)||\exp(0.5it)-\exp(-0.5it)|=1 \cdot |2\sin(0.5t)|

Die Umformung der beiden Faktoren folgt jeweils aus Satz 105, wie von FS zitiert.

Avatar von 14 k

Ein anderes Problem?

Stell deine Frage