∣cost+isint−1∣=2∣∣∣sin(2t)∣∣∣
<=> ∣cost−1+isint∣=2∣∣∣sin(2t)∣∣∣
<=> (cost−1)2+sin2t=2∣∣∣sin(2t)∣∣∣
alles nicht negativ, da kann ma quadrieren
<=> (cost−1)2+sin2t=4sin2(2t)
<=> cos2t−2cost+1+sin2t=4sin2(2t)
<=> 1−2cost+1=4sin2(2t)
<=> 2−2cost=4sin2(2t) |:2
<=> 1−cost=2sin2(2t)
<=> 1−cos(2t+2t)=2sin2(2t)
Additionstheorem anwenden
<=> 1−(cos2(2t)−sin2(2t))=2sin2(2t)
<=> 1−cos2(2t)+sin2(2t))=2sin2(2t)
<=> sin2(2t)+sin2(2t))=2sin2(2t)
BINGO!