0 Daumen
1,4k Aufrufe

Aufgabe Exponentialfunktionen:

Schnittpunkte berechnen. Wo schneiden sich f \mathrm{f} und g \mathrm{g} ?

a) f(x)=133x,g(x)=1279x \mathrm{f}(\mathrm{x})=\frac{1}{3} \cdot 3^{\mathrm{x}}, \mathrm{g}(\mathrm{x})=\frac{1}{27} \cdot 9^{\mathrm{x}}

b) f(x)=2(12)x,g(x)=16(14)x f(x)=2 \cdot\left(\frac{1}{2}\right)^{x}, g(x)=16 \cdot\left(\frac{1}{4}\right)^{x}

c) f(x)=32(23)x,g(x)=63x f(x)=\frac{3}{2} \cdot\left(\frac{2}{3}\right)^{-x}, g(x)=6 \cdot 3^{x}

Avatar von

2 Antworten

+1 Daumen

(3/2)*(2/3)-x = 6*3x

(3/2)*(3/2)x = 6*3x

[(3/2)/3]x = 4

(1/2)x =22

2-x = 22

-x = 2

x = -2

Logarithmus ist nicht notwendig, ein Exponentenvergleich reicht völlig aus.

Avatar von
0 Daumen

Allgemein

4-1 = 1 /41
(4/2)-1 = 4-1 / 2-1 = 21 /  41 = (2/4)1
(4/2)-1 = (2/4)1

In der Aufgabe stehen aber (2/3)-x

( 2/3)-x = ( 3/2)x


(3/2)*(3/2)x = 6*3x
(3/2) * 3x / 2x = 6 * 3x  | : 3x
( 3/2 ) / 2x = 6  | * 2x
2x * 6 = 3 / 2
2x = 1 / 4  | ln ( )
x * ln ( 2 ) = ln (1 / 4 ) = ln (1 ) - ln ( 4 )
x * ln ( 2 ) = - ln ( 4 )
x = - ln ( 4 ) / ln ( 2 )
entweder mit dem Taschenrechner ausrechnen

oder
x = - ln ( 22 ) / ln ( 2 )
x = - 2 * ln ( 2 ) / ln ( 2 )
x = -2

mfg Georg

Avatar von 123 k 🚀

Ein anderes Problem?

Stell deine Frage