$$ O(x,y,z) = 2(xy+xz+yz)   $$
$$ \frac{\partial \,O }{\partial x}= 2(y+z)=2(12+20)= 64   $$
$$ \frac{\partial \,O }{\partial y}= 2(x+z)=2(10+20)= 60     $$
$$ \frac{\partial \,O }{\partial z}= 2(x+y)=2(10+12)= 44     $$
$$ \Delta O=\sqrt{ \left( \frac{\partial \,O }{\partial x} \cdot \delta x\right) ^2 +  \left( \frac{\partial \,O }{\partial y} \cdot \delta y\right) ^2 +  \left( \frac{\partial \,O }{\partial z} \cdot \delta z\right) ^2             }   $$
$$ \Delta O=\sqrt{ \left(64 \cdot 0,1\right) ^2 +  \left( 60 \cdot 0,1\right) ^2 +  \left( 44 \cdot 0,1\right) ^2             }   $$
$$ \Delta O=\sqrt{ \left(6,4 \right) ^2 +  \left( 6,0\right) ^2 + \left( 4,4 \right) ^2  }   $$
$$ \Delta O=\sqrt{ 40,96 +  36 + 19,36 }   $$
$$ \Delta O=  9,81$$----
$$ O(x,y,z) = 2(10\cdot 12+10 \cdot 20+12\cdot 20)   $$
$$ O(x,y,z) = 2(120+200+240)   $$
$$ O(x,y,z) = 1120   $$
$$ \frac{\Delta O}{O(x,y,z)}= \frac {9,81}{1120}= 0,00876=  0,876\% $$