∫[arccos(x−1)]2dx
u=arccos(x−1)
dxdu=−1−x21
dx=−1−x2du
−∫u21−x2du
---
arccos(x−1)=u(x−1)=cosux=1+cosu
---
−∫u21−(1+cosu)2du
−∫u21−1+2cosu+(cosu)2du
−∫u2(cosu)2+2cosudu
Hinweis zur partiellen Integration:
dudcos2(u)+2cos(u)=−(cosu)(cosu+2)(sinu)(cos(u)+1)