0 Daumen
1,5k Aufrufe

Beschreibe folgende Teilmenge von R als Vereinigung von Intervallen.

$$ \{ x\in\mathbb R\backslash\{0\} : \frac { 1 }{ 2x }  +|2x−1|<2 \} $$

{xR\{0} : 12x+2x1<2} \{ x\in\mathbb R\backslash\{0\} : \frac { 1 }{ 2x } +|2x−1|<2 \}

P.S die "0" nach dem R ist eig. umklammert {0}.

Liebe Grüße

Avatar von

Habe die Klammern jeweils mit einem Backslash geschützt.

Den ohne-Strich konnte ich noch nicht zum Erscheinen bringen. Daher dort mal das Wort "ohne". Hoffe, das sieht nun etwa so aus, wie du das haben wolltest.

Wie wär's mit xR\{0}x\in\mathbb R\backslash\{0\}?

Gast: Besten Dank. Hab's jetzt so gemacht.

Einen Unterschied zwischen den beiden Zeilen sehe ich nicht. Aber nur eine wird umgewandelt.

EDIT: Wird an verstecktem HTML-Code liegen. Macht aber nichts, so sieht der Fragesteller mal, was wir eingegeben haben.

1 Antwort

0 Daumen

1/(2·x) + ABS(2·x - 1) < 2

Mache eine Fallunterscheidung: x < 0 ∨ 0 < x ≤ 1/2 ∨ x ≥ 1/2

Und löse dann die Ungleichung.

Avatar von 493 k 🚀

Wie würde das dann aussehen?

Für x < 0

1/(2·x) + |2·x - 1| < 2

1/(2·x) - (2·x - 1) < 2

1/(2·x) - 2·x + 1 < 2

1/(2·x) < 2·x + 1

1 > (2·x + 1)·(2·x)

1 > 4·x2 + 2·x

4·x2 + 2·x - 1 < 0

- √5/4 - 1/4 < x < √5/4 - 1/4 und x < 0

- √5/4 - 1/4 < x < 0

Mach das noch für die anderen Fälle. Und führe dann alle Lösungsmengen zusammen.

Ein anderes Problem?

Stell deine Frage