a)
\(\lim_{x \to 1}\)   \(\frac{f(x)-f(1)}{x-1}\)  
= \(\lim_{x \to 1}\)   [ x2 - 2 - (-1) ] / (x - 1)
= \(\lim_{x \to 1}\)   (x2 - 1) / (x - 1)
= \(\lim_{x \to 1}\)   [ (x - 1) • (x+1) ] / (x - 1)
= \(\lim_{x \to 1}\)  (x+1)   =  2
c)
\(\lim_{x \to -2}\)   \(\frac{f(x)-f(-2)}{x+2}\)  
=  \(\lim_{x \to -2}\)   [ \(\frac{1}{x+3}\) - \(\frac{1}{-2+3}\) ]  /  (x+2) 
=  \(\lim_{x \to -2}\)   [ \(\frac{1}{x+3}\) - 1 ]  /  (x+2) 
=  \(\lim_{x \to -2}\)   [ \(\frac{1 - (x+3)}{x+3}\) ]  /  (x+2) 
=  \(\lim_{x \to -2}\)   [ \(\frac{ - x - 2}{x+3}\) ]  /  (x+2) 
=  \(\lim_{x \to -2}\)   [ \(\frac{ - (x + 2)}{x+3}\) ]  /  (x+2) 
=  \(\lim_{x \to -2}\)      \(\frac{-1}{x+3}\) 
=      \(\frac{-1}{-2 + 3}\) 
= - 1
Gruß Wolfgang