0 Daumen
603 Aufrufe

Peter arbeitet im Chemielabor. Er möchte eine 30%-ige Salzlösung herstellen.Er nimmt aber 5 Liter 15 %-ige Salzlösung und sucht im Labor eine höher konzentrierte Salzlösung. Er findet noch eine 50 %-ige Salzlösung. Wieviel Liter von der 50%-igen Salzlösung muss er zum Mischen nehmen?

von

Für's Erste: Betrachte mal, was https://www.mathelounge.de/suche?q=salzlösung so alles bringt.

Vielleicht ist deine Aufgabe da schon dabei.

1 Antwort

0 Daumen

1 Liter 15 % plus x Liter 50 % = ( 1 + x ) * 0.3

1 * 0.15 + x * 0.5 = 0.3 + 0.3 * x
0.2 * x = 0.15
x = 0.75

Probe
1 * 0.15 + 0.75 * 0.5 = ( 1 + 0.75 ) * 0.3
0.525 = 0.525

1 Liter 15 % Säure plus 0.75 Liter 50 % Säure ergibt 30 % Säure.
Für 5 Liter entsprechend berechnen.

von 111 k 🚀

SUPER

Hallo georgborn,

nochmals vielen Dank für die gestrige Lösung der Aufgabe.

Ich habe den Ansatz entsprechend für die 5 l in meiner Textaufgabe gemacht und komme einfach nicht auf die richtige Lösung. Wenn ich am Ende die Probe durchführe, ergibt sich auf jeder Seite ein andres Ergebnis.
Dies ist mein Ansatz:

5 * 15% + x * 50% = (5 + x) * 30 %

Können Sie mir bitte weiterhelfen, was in meinem Ansatz falsch ist?

Ich bedanke mich schon mal im voraus für Ihre Mühe,

viele Grüße

Annabelle

Vorbemerkung : hier im Forum wird üblicherweise das " du " verwendet.

1 Liter 15 % Säure plus 0.75 Liter 50 % Säure ergibt 30 % Säure.
Für 5 Liter entsprechend berechnen.

1. Menge verfünffachen : 1 Liter * 5 = 5 Liter
2. Menge verfünffachen : 0.75 Liter * 5 = 3.75 Liter

5 * 0.15 + 3.75 * 0.5 = ( 5 + 3.75 ) * 0.3
0.75 + 1.875 = 8.75 * 0.3
2.625 = 2.625  | stimmt

Deine Rechnung
5 * 15% + x * 50% = (5 + x) * 30 %
75 + 50 * x = 150 + 30 * x
20 * x =  75
x = 3.75 Liter

Stimmt auch.

mfg Georg

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community