Zu den weiteren Teilen: Wenn man das für einige kleine n mal aufschreibt, sieht man sofort, dass f(0)=f(3), f(1)=f(4) und f(2)=f(5) ist, usw. Saemtliche Werte wiederholen sich im Dreierpack., z.B. (f(n))n=0∞=(1,2,−3,1,2,−3,…) und die Summe pro Dreierpack ist null. Zwei Werte kann man beliebig vorgeben, der dritte ist dann ueber die Summenbedingung festgelegt. Bei zwei Freiheitsgraden wird W also zweidimensional sein.