$$\int_4^9\frac{\sqrt{x}}{\sqrt{x}-1}dx=\int_4^9\frac{\sqrt{x}-1+1}{\sqrt{x}-1}dx=\int_4^9\frac{\sqrt{x}-1}{\sqrt{x}-1}dx+\int_4^9\frac{1}{\sqrt{x}-1}dx \\ =\int_4^9 dx+\int_4^9\frac{1}{\sqrt{x}-1}dx=(9-4)+\int_4^9 \frac{1}{\sqrt{x}-1}dx=5+\int_4^9 \frac{1}{\sqrt{x}-1}dx=(\star )$$
Um das Integral $$\int_4^9 \frac{1}{\sqrt{x}-1}dx$$ zu berechnen, setzen wir $$u=\sqrt{x}$$ dann haben wir
$$\int_2^3 \frac{1}{u-1}2udu=2\int_2^3 \frac{u}{u-1}du=2\int_2^3 \frac{u-1+1}{u-1}du \\ =2\int_2^3 \frac{u-1}{u-1}du+2\int_2^3 \frac{1}{u-1}du \\ =2\int_2^3 du+2\int_2^3 \frac{1}{u-1}du=2+2\ln (u-1)\mid_2^3=2+2\ln 2$$
Dann haben wir folgendes: $$(\star)=5+2+2\ln 2=7+2\ln 2$$