0 Daumen
6,5k Aufrufe

Ableitung von arctan(x)

$$(f^{-1})'(x)=\frac{1}{f'(f^{-1}(x))}$$

blob.png


ich habe es schon versucht. Irgendwie komm ich einfach nicht auf das Ergebins. Was mache ich falsch?

Avatar von

1 Antwort

0 Daumen
 
Beste Antwort

einfacher ist es, wenn du tan(x)'=tan(x)2+1

benutzt. 1/COS(x)2 ist äquivalent, aber dann kürzt es sich nicht so leicht ;)

Avatar von 37 k

okay und wie muss ich bei mir jetzt weiter machen ?

Du setzt anstatt 1/cos2(x) f'(x)=tan2(x)+1 ein:

f-1(x)=1/(f'(f-1(x))

=1/(tan2(arctan(x))+1)

=1/(x2+1)

weil tan(arctan(x))=x (Umkehrfunktion)

wie kommt man auf diese ableitung von tangens?

sorry aber ich steh total auf dem schlauch

Du kennst bestimmt die Formel

1=sin2(x)+cos2(x) .

Demnach ist

1/cos2(x)=(sin2(x)+cos2(x))/cos(x)2

=sin2(x)/COS2(x) +1

=tan2(x)+1

super danke !!habs verstanden!:)))

Ein anderes Problem?

Stell deine Frage