Zeige M(N)(K) ist Ring mit Addition und Multiplikation wie für Matrizen und 1-Element E= dij (d=Kronecker-Symbol)

0 Daumen
23 Aufrufe

Hallo,


ich soll zeigen, dass unter der Voraussetzung K=Körper und M(N)(K) = [(aij) wobei (i,j) € NxN|aij € K für alle j €N gibt es nur endlich viele i €N mit aij ungleich 0] die Menge der spaltenendlichen Matrizen M(N)(K) ein Ring mit Addition und Multiplikation wie füŕ Matrizen und 1-Element E = (dij) wobei d = Kroneckersymbol.



Ich hoffe, ich habe das einigermaßen verständlich ausgedrückt.


Nun zu meinen Fragen:

1) Sind spaltenendliche Matrizen einfach nur Matrizen mit endlichen Spalten :) ich weiß komische Frage^^

2) Um zu zeigen, dass M(N)(K) ein Ring ist, nehme ich einfach aij + bij und aij* bij und zeige außerdem, dass es ein neutrales Element gibt, also die Definition eines Ringes, oder?


Über Hilfe würde ich mich sehr freuen :=) Danke!

Gefragt 11 Jan von MathIsMyCryptonite

Bitte logge dich ein oder melde dich hier an um die Frage zu beantworten.

Lass dir vom Mathe-Profi helfen und teste die Schülerhilfe zwei Unterrichtsstunden gratis. Jetzt Termin sichern unter 0800 30 200 40 45 oder hier klicken und informieren.

Ein anderes Problem?

Stell deine Frage

Ähnliche Fragen

0 Daumen
1 Antwort
0 Daumen
1 Antwort

Willkommen bei der Mathelounge! Stell deine Frage sofort und ohne Registrierung

x
Made by Memelpower
...