0 Daumen
40 Aufrufe

Hallo,


ich soll zeigen, dass unter der Voraussetzung K=Körper und M(N)(K) = [(aij) wobei (i,j) € NxN|aij € K für alle j €N gibt es nur endlich viele i €N mit aij ungleich 0] die Menge der spaltenendlichen Matrizen M(N)(K) ein Ring mit Addition und Multiplikation wie füŕ Matrizen und 1-Element E = (dij) wobei d = Kroneckersymbol.



Ich hoffe, ich habe das einigermaßen verständlich ausgedrückt.


Nun zu meinen Fragen:

1) Sind spaltenendliche Matrizen einfach nur Matrizen mit endlichen Spalten :) ich weiß komische Frage^^

2) Um zu zeigen, dass M(N)(K) ein Ring ist, nehme ich einfach aij + bij und aij* bij und zeige außerdem, dass es ein neutrales Element gibt, also die Definition eines Ringes, oder?


Über Hilfe würde ich mich sehr freuen :=) Danke!

Gefragt von

Bitte logge dich ein oder registriere dich, um die Frage zu beantworten.

Ein anderes Problem?

Stell deine Frage

Ähnliche Fragen

Willkommen bei der Mathelounge! Stell deine Frage sofort und kostenfrei

x
Made by a lovely community
...