(((n + 1)!)2·(2·n)!)/(n!2·(2·n + 2)!)
= ((n!·(n + 1))2·(2·n)!)/(n!2·(2·n)!·(2·n + 1)·(2·n + 2))
= (n!2·(n + 1)2·(2·n)!)/(n!2·(2·n)!·(2·n + 1)·(2·n + 2))
= ((n + 1)2·(2·n)!)/((2·n)!·(2·n + 1)·(2·n + 2))
= ((n + 1)2)/((2·n + 1)·(2·n + 2))
= ((n + 1)2)/((2·n + 1)·2·(n + 1))
= (n + 1)/((2·n + 1)·2)
= (n + 1)/(4·n + 2)