(1 + y2) / y' + x·y = 0
y' · y / (- y2 - 1) = 1 / x
dy/dx · y / (- y2 - 1) = 1/x
y / (- y2 - 1) dy = 1/x dx
∫ -y / (y2 + 1) dy = ∫ 1/x dx
Subst.
z = y2 + 1
1 dz = 2·y dy
dy = dz / (2·y)
∫ -y / z dz / (2·y) = ∫ 1/x dx
∫ -1 / (2·z) dz = ∫ 1/x dx
- 1/2·LN(z) = LN(x) + C
Resubst.
- 1/2·LN(y2 + 1) = LN(x) + C1
LN(y2 + 1) = -2·LN(x) + C2
LN(y2 + 1) = LN(x-2) + C2
y2 + 1 = eC2 / x2
y2 = C3 / x2 - 1
y2 = (C3 - x2) / x2
y = ± √(C3 - x2) / x
Vereinfachung der Konstanten
y = ± √(C - x2) / x