Aufgabe:
Für p∈R sei das Vektorfeld Fp : R3→R3 gegeben durch
Fp(x,y,z)=(pyz+2x,xz−2y,xy)⊤
Gegeben seien die Kurven ϒ1, ϒ2 : [0, 1] → ℝ3,
ϒ1(t) = (t, t, t2 )T, ϒ2(t) = (t, t, t)T
Berechnen Sie die Kurvenintegrale ∫Υ1Fp⋅dsund∫Υ2Fp⋅ds in Abhänigkeit von p.
Meine Ideen:
Ist die folgende Formel richtig?
∫F(γ(t))γ′(t)dt
Wenn ja wie gehts weiter?
mfg, danke im Voraus.