0 Daumen
207 Aufrufe

Ich habe etwas probleme bei der Aufgabe hier.

für welche x ∈ R gilt:

 1-[(Bild Mathematik

von

Ich hatte mir gedacht  ich betrachte die Fälle x≥-2 und x⟨-2.


Beim 1. kommt jedoch ein widerspruch heraus. x⟨-5 und  x≥-2


Bei Fall 2 kommt heraus x⟩-26/10, das müsste glaube ich dann auch stimmen? Aber Fall 1 passt nicht.

3 Antworten

+2 Daumen

1 - 6·(x + 3) / |2·x + 4| > -1
|2·x + 4| - 6·(x + 3) > -|2·x + 4|
2·|2·x + 4| - 6·(x + 3) > 0
4·|x + 2| - 6·(x + 3) > 0

Fall 1: x < -2

-4·(x + 2) - 6·(x + 3) > 0
x < -2.6

Fall 2: x > -2

4·(x + 2) - 6·(x + 3) > 0
x < -5

Lösung
x < -2.6

von 298 k

Das meinte ich bei meinem Beitrag mit dem Widerspruch.

Bei Fall 2 kann x doch nicht >-2 und gleichzeitig < -5 sein? Würde diese Lösung dann wegfallen und ich hätte als Endergebnis nur <-2,6?

Richtig. Aus dem ersten Fall hat man L1 = { x €R | x<-2.6 } und aus dem zweiten Fall L2= { } , also "leere Menge"

Vereinigt miteinander gibt das nur L1.

Ja super vielen Dank :) ich dachte nur meine Lösung sei falsch, da ein Widerspruch heraus kam

0 Daumen

Forme zunächst um in 2-3(x+3)/|2+x|>0 und mache dann eie Fallunterschedung: 1.Fall x> - 2; 2.Fall x<-2.

von 61 k

Alles klar ich versuche es mal so:) Vielen Dank

0 Daumen

Da ich auch schon etwas  ausgearbeitet
hatte hier meine Berechnung

Bild Mathematik
Bild Mathematik

von 89 k

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage sofort und kostenfrei

x
Made by a lovely community
...