0 Daumen
1,5k Aufrufe
(√(6/35))/(√(10/21))

Ich finde keine´Möglichkeit, diesen zu lösen!!!
von

2 Antworten

+1 Daumen
 
Beste Antwort

Dies ist ja ein Doppelbruch in der Form (a/b) / (c/d).

Das wird ja bekanntlich nach (a*d) / (b*c) aufgelöst.

Damit kannst du nun für 

a: √6

b: √35

c: √10

d: √21

einsetzten.

Somit kannst du nun ausrechnen:

a*d = √6 * √21√(6*21) = √126

b*c= √35 * √10 = √(35*10) = √350

 

Nun kann man das wieder zu einem Bruch zusammenfassen:

√126 / √350 = √(126/350) 

Nun kürzen:

√(9/25) = √9 / √25 = 3 / 5

 

Ich hoffe, du verstehst es jetzt und ich konnte dir helfen!

Simon

von 4,0 k
0 Daumen
√ ( 6 / 35 ) / √ (10 / 21 )

= ( √ ( 6 ) / √ ( 35 ) ) / ( √ (10 ) / √ ( 21 ) )

[Mit Kehrbruch multiplizieren:]

= ( √ ( 6 ) / √ ( 35 ) ) *  ( √ ( 21 ) / √ (10 ) )

[Wurzeln zerlegen:]

= ( √ 2 * √ 3 * √ 3 * √ 7 ) /  ( √ 5 * √ 7 * √ 2 * √ 5 )

[Jetzt kürzen:]

= ( √ 3 * √ 3 ) /  ( √ 5 * √ 5 )

= 3 / 5
von 32 k

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community