0 Daumen
888 Aufrufe

Herr Kluge legt 8000 Euro zu 7,25% Zinseszinsen an.  Nach Ablauf von fünf Jahren verringert er das Guthaben um 4352 Euro und legt den Restbetrag noch weitere fünf jahre zu 7,75% Zinseszinsen an. Wie viel Eur beträgt das Endkapital nach insgesamt zehn Jahren ?

Avatar von

2 Antworten

+1 Daumen
 
Beste Antwort

Formel:

Endkapital =KAnfang · (1+Prozent100)Jahre \text{Endkapital } = K_{\text{Anfang}} · (1+\frac{\text{Prozent}}{100})^{\text{Jahre}}

8000 · (1+7.25%100%)5=11352.11 8000 € · (1+\frac{7.25 \%}{100 \%})^{5} = 11352.11 €

Dann hebt er 4352 € ab .

11352 € - 4352 € = 7000 € hat er noch auf dem Konto: (diesmal 7.75%)

7000 · (1+7.75%100%)10=14766.27 7000 € · (1+\frac{7.75 \%}{100 \%})^{10} = 14766.27 €

Avatar von 28 k

Warum hoch 10 ?

Das ist eine Frage:

"Wie viel Euro beträgt das Endkapital nach insgesamt zehn Jahren?"

Das ist eine Tatsache:

[...] und legt den Restbetrag noch weitere fünf jahre zu 7,75% Zinseszinsen an.

Sind fünf Jahre und fünf weitere nicht zehn Jahre?

Fünf Jahre gelten 7,25% und fünf weitere 7,75%. Macht zusammen zehn Jahre Laufzeit.

Ja, das könnte schon sein so wie du das interpretierst.

0 Daumen

erst brauchst du f(5),wegen den 5 Jahren und dann noch mal 5 Jahre mit den neuen Betrag.

f(5)=80001,725511352g(5)=(113524352)1,07755=10166,8f(5)=8000€\cdot {1,725}^{5}\approx 11352€\\ g(5)=(11352€-4352)\cdot {1,0775}^{5}=10166,8€

Dein Endergebnis ist 10166,8€


Smitty

Avatar von 5,4 k

Ein anderes Problem?

Stell deine Frage