0 Daumen
2,1k Aufrufe

Die Menge F = { f1, f2, f3, f4 } von stetigen Funktionen sei gegeben durch

f1: R -> R. x-> 4(sin(x))^(2), f2: R -> R: x-> -(cos(x))^(2),

f3: R -> R: x-> 2cos(2x)            , f4: R -> R: x-> exp(x).


(a) Entscheiden Sie welche Teilmengen von F im Vektorraum C^(0)(R) der stetigen Funktionen auf R linear abhängig, bzw. linear unabhängig sind.

(b) Bestimmen Sie die Dimension des von F aufgespannten  Untervektorraums von C^(0)(R).


wie vorher gesagt muss es bis freitag können

jede antwort wäre sehr hilfreich.


Vielen Dank

immai

Avatar von 2,1 k

Ich nehme an du bist Masch-Bauer? Bist du nicht langsam mit Mathe durch? :)

Wer ist masch bauer?

Leider nich nicht

Ok, manche deiner Aufgaben sahen sehr nach Maschinenbau aus ;)
Einfach mal aus Interesse gefragt, was studierst du denn? (Ing-Bereich?)

ja sind ja auch aufgaben aus dem Berreich^^

bei mir ist grad alles kompliziert^^

2 Antworten

+1 Daumen
 
Beste Antwort

Hallo

f3 umformen mit Additionstheorem, dann einfach  die lineare Unabhängigkeit der 4 untersuchen, die Gleichung af1+bf2+cf3+df4 muss für ALLE x nur mit den Koeffizienten 0 erfüllbar sein. wenn du die Zahl der Lin unabhängigen hast ist b schon beantwortet.

Gruß lul

Avatar von 108 k 🚀

f3 umgeformt wäre dann

2cos(2x)=2(sin(2x))/(tan(2x))

aber wie soll der rest gehen?

oder soll es viel mehr

cos(2x)= cos^(2)(x)-sin^(2)(x) sein?

aber wie soll ich die anderen umformen und verbinden?=

pp Image 2018-11-23 at 02.02.25.jpegmeine wäre das hier?

aber wie genau weiter?

hallo

 damit ist gezeigt, dass f3=af1+bf2 ist. jetzt noch zeigen, dass f1,f2,f4 linear unabhängig sind, dann hast du a und b

Gruß lul

In dem ich die malnehme und dann abziehe?

Und schaue ob 0 rauskommt?

Könntest du mir den rest zeigen bitte bin am verzwiefeln.

+2 Daumen

Für f3 gilt doch

2·COS(2·x) = (-1/2)·(4·SIN(x)2) + (-2)·(- COS(x)2)

also sind f1,f2 und f3 linear abhängig.

Avatar von 493 k 🚀

wie genau?

wie geht die b und c?


Vielen DAnk

b)Dimension= Anzahl der Lin. unabhängigen Vektoren.

c) gibt es in deiner frage nicht.

Gruß lul

Ein anderes Problem?

Stell deine Frage

Ähnliche Fragen