0 Daumen
391 Aufrufe

Wenn ich eine vollständige Induktion für  \( \prod_{k=1}^{n}({1+\frac{2}{k}}) \) = \( \sum\limits_{k=1}^{n+1}{k} \) durchführen möchte, dann müsste ich doch \( \sum\limits_{k=1}^{n+1}{k} \) erst einmal umformen. WolframAlpha gibt hierzu \( \sum\limits_{k=1}^{n+1}{k} \) = \( \frac{1}{2} \)(n+1)(n+2) an und damit lässt sich dann die Induktion auch super durchführen.

Meine Frage ist nur: Wie komme ich auf diese Form?

Die Lösung ist wahrscheinlich denkbar einfach, trotzdem wäre ich für ein kurzen Tipp echt dankbar!

Avatar von

2 Antworten

+1 Daumen
 
Beste Antwort

Hallo Simon,

\( \sum\limits_{k=1}^{n}k = 1/2·n·(n+1)\)       (kann man mit vollständiger Induktion beweisen!)

 ist eine bekannte "Summenformel". Da musst du nur noch n+1 für n einsetzen. 

Info (auch weitere Formeln):

https://www.arndt-bruenner.de/mathe/Allgemein/summenformel2.htm

Gruß Wolfgang

Avatar von 86 k 🚀
+1 Daumen

" Drauf kommen "  heißt ja noch nicht beweisen .

Angeblich hat es Gauss als Kind so überlegt:

Wenn ich die Zahlen von 1 bis 100 addieren will, sieht das so aus

1++2+3++ …………………+ 99 + 100   oder so

100+99+98+...……………….+2 + 1

Wenn ich jetzt alle die übereinander stehen addiere,

bekomme ich immer 101 und das 100 mal.

Also ist jede dieser Summen die Hälfte von 100*101.

Und bei der Summe von 1 bis n+1 also die

Hälfte von (n+1)*(n+2).

Avatar von 288 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community