0 Daumen
2k Aufrufe

Logarithmus und Exponentialfunktion: Lösen Sie folgende Gleichungen:

(a) ln(x+30)=4 \ln (x+30)=4
(b) log(x2+x+15)=log(2x2+2x+3) \log \left(x^{2}+x+15\right)=\log \left(2 x^{2}+2 x+3\right)
(c) e2x+4=ex1 e^{2 x+4}=e^{x-1}
(d) (ex)2=7 \left(e^{x}\right)^{2}=7
(e) log(3x1)+log(x+5)=0 \log (3 x-1)+\log (x+5)=0
(f) 2log(x1)=log(3x+1) 2 \log (x-1)=\log (3 x+1)

Avatar von

1 Antwort

+1 Daumen
 
Beste Antwort

Hi,

a)

ln(x+30) = 4

x+30 = e4

x = e4-30

 

b)

log(x2+x+15) = log(2x2+2x+3)

x2+x+15 = 2x2+2x+3

x1 = -4 und x2 = 3

 

c)

e2x+4 = ex-1

2x+4 = x-1

x = -5

 

d)

(ex)2 = 7

e2x = 7

2x = ln(7)

x = ln(7)/2

 

e)

log(3x-1)+log(x+5) = 0    Logarithmengesetz log(a)+log(b) = log(ab)

log((3x-1)(x+5)) = 0

(3x-1)(x+5) = 1

x = 1/3(√(67)-7)

 

f)

2log(x-1) = log(3x+1)

log((x-1)2) = log(3x+1)

(x-1)2 = 3x+1

x = 5

 

Grüße

Avatar von 141 k 🚀

Ein anderes Problem?

Stell deine Frage