Logarithmus und Exponentialfunktion: Lösen Sie folgende Gleichungen:
(a) ln(x+30)=4 \ln (x+30)=4 ln(x+30)=4(b) log(x2+x+15)=log(2x2+2x+3) \log \left(x^{2}+x+15\right)=\log \left(2 x^{2}+2 x+3\right) log(x2+x+15)=log(2x2+2x+3)(c) e2x+4=ex−1 e^{2 x+4}=e^{x-1} e2x+4=ex−1(d) (ex)2=7 \left(e^{x}\right)^{2}=7 (ex)2=7(e) log(3x−1)+log(x+5)=0 \log (3 x-1)+\log (x+5)=0 log(3x−1)+log(x+5)=0(f) 2log(x−1)=log(3x+1) 2 \log (x-1)=\log (3 x+1) 2log(x−1)=log(3x+1)
Hi,
a)
ln(x+30) = 4
x+30 = e4
x = e4-30
b)
log(x2+x+15) = log(2x2+2x+3)
x2+x+15 = 2x2+2x+3
x1 = -4 und x2 = 3
c)
e2x+4 = ex-1
2x+4 = x-1
x = -5
d)
(ex)2 = 7
e2x = 7
2x = ln(7)
x = ln(7)/2
e)
log(3x-1)+log(x+5) = 0 Logarithmengesetz log(a)+log(b) = log(ab)
log((3x-1)(x+5)) = 0
(3x-1)(x+5) = 1
x = 1/3(√(67)-7)
f)
2log(x-1) = log(3x+1)
log((x-1)2) = log(3x+1)
(x-1)2 = 3x+1
x = 5
Grüße
Ein anderes Problem?
Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos