Vom Duplikat:
Titel: Koeffizienten einer trig. Fkt. 4. Grades
Stichworte: trigonometrie,reihen,analysis
Aufgabe:
( ) Die durch f(t)=(cos(2t)−isin(2t))2,t∈R, angegebene Funktion ist ein trigonometrisches Polynom vom Grad 4 und la¨sst sich darum in der Form f(t)=∑k=−44ckekit sowie in der Form f(t)=2a0+∑j=14(ajcos(jt)+bjsin(jt)),t∈R mit (gegebenenfalls komplexwertigen) Koeffizienten ck bzw. aj,bj darstellen. Geben Sie alle Koeffizienten ck fu¨r −4≤k≤4 sowie a0 und aj,bj fu¨r 1≤j≤4 an.
Problem/Ansatz:
Gibt es bei trig n Trick um an die Koeffizienten zu kommen?