0 Daumen
127 Aufrufe

Aufgabe:

Cholerabakterien haben bei 37 °C eine Verdopplungszeit von ca. 30 Minuten. Nach welcher Zeit hat sich eine Anfangsmenge von 50 Bakterien auf über 10 000 Bakterien vermehrt?

von

4 Antworten

+1 Daumen
 
Beste Antwort

Rechne den Zweierlogarithmus von 200 und multipliziere das mit 30 Minuten.

von 7,3 k
+1 Daumen

Hallo

 Anfang 50, nach 30Min 2*50, nach 2*30 Min 2*2*50, nach 7mal 30 Min 2^7*50

 nach n mal 30Min  N(30Min*n=50*2^n

oder mit der Zeit in Minuten: N(t)=50*2t/30Min  oder wenn du in Stunden rechnest N(t)=50*22t/h 

Gruß lul

von 35 k
+1 Daumen

10000 = 50*a^t

a= 2^(1/30)

--> 200 = a^t

t = ln200/ln a = 229,3 Minuten = 2 Std. 40 min (gerundet)

von 38 k
eine Verdopplungszeit von ca. 30 Minuten

D.h. in 2 Std. 40 Minuten verdoppelt es gut fünf mal. Damit kommt man aber nicht von 50 auf 10000 Bakterien.

229,3 Minuten = 2 Std. 40 min (gerundet)

230-40=190

190/2=95

Dann hätte eine Stunde 95 Minuten ...    ;-)

Dieser Kommentar sollte dich gegen
1:00 Uhr erreicht haben,
Kommt jetzt also etwas spät.

Hallo Andreas,
die Umwandlung
229,3 Minuten = 2 Std. 40 min
ist mehr als zweifelhaft.
mfg Georg
Von Beileidsbezeugungen an meinem Grab
bitte ich Abstand zu nehmen.

0 Daumen

$$10000=50\cdot2^\frac{x}{30\,\text{min}}~~~~~|:50$$

$$200=2^\frac{x}{30\,\text{min}}~~~~~|\ln$$

$$\ln 200=\frac{x}{30\,\text{min}}\ln 2~~~~~\left|\cdot\frac{30\,\text{min}}{\ln 2}\right.$$

$$ x= 30\,\text{min}\cdot\frac{\ln 200}{\ln 2} $$

\( x\approx 30\,\text{min}\cdot7.64385618977472469574063885897878 \approx 229.32\,\text{min} \approx 3\,\text h ~ 49\,\text{min}~18,9\,\text s \)

von 5,2 k

Hallo Monty,
Glückwunsch.
diese Antwort hätte ich auch nicht besser geben können.

And now something completely different

mir haben lehrer den unterschied zwischen groß und kleinschreibung und die bedeutung der
interpunktion zb punkt und komma beigebracht die das lesen eines textes gerade wenn er
komplizierter ist und mehrere verschachtelungen enthält wesentlich erleichtert

@georg

Ich verstehe den Sinn deines Kommentars nicht und antworte deshalb mit dem berühmten Ludwig Boltzmann:

forwort.

ich musste mir in meinen letzten büchern di neue ortografi gefallen lassen, di zu erlernen ich zu alt bin; so möge man sich hir im forworte di neueste ortografi gefallen lassen. ich glaube, man soll di abweichungen fon der fonetik, wenn man si nicht ganz ferschonen will, dann schon alle hinrichten. wenn man dem hunde den schwanz nicht lassen will, schneide man in mit einem griffe ganz ab!

Ich bin ja auch gegen vorschnelles Runden. Deutsche Präzision ist alles. Bei 32 Stellen nach dem Komma macht das für die Lichtgewindigkeit doch immerhin eine Strecke von 3 Yoktometern aus, und die muss man nur so rund eine halbe Milliarde mal aneinanderreihen, um auf einen Protonendurchmesser zu kommen.

Ich verstehe den Sinn deines Kommentars
nicht

Es steht ja auch da :

And now something completely different

Was darüber und darunter steht hat nichts
miteinander zu tun.

@2CV
Allerdings verstehe ich deinen Kommentar
auch nicht. Macht aber nichts.
Es gibt auch Bücher in der Art
" Lexkon des unnützen Wissens ".
(* Scherzmodus ein*)
Ich empfehle dir sowieso das Buch
" Selbstgespräche sicher führen "
(* Scherzmodus aus*)

@dö

wolframalpha hat noch mehr Stellen angegeben. Ich habe schon "sinnvoll" gerundet.   ;-)

Diese Traumatisierung des armen Protons, wenn sein Durchmesser einfach so weggerundet würde...

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage sofort und kostenfrei

x
Made by a lovely community