0 Daumen
982 Aufrufe

Aufgabe:

a) Sei  (V,〈·,·〉)  ein R-Vektorraum  mit  Skalarprodukt, W ⊆ V ein  Unterraum  und v∈V beliebig. Wir betrachten Zerlegungen der Form v = v ||+v⊥mit v||∈W und〈w, v⊥〉= 0 für  alle w∈W.  Zeigen  Sie,  dass  diese  Zerlegung  für  jedes v∈V eindeutig  ist.

b) Der Vektor w ∈ Rn \ {0},n > 1, definiere nun den Unterraum W durchW:= span{w}⊂Rn. Außerdem sei v∈Rn gegeben. Finden Sie Formeln für v|| und v⊥in Begriffen von v und w.

Avatar von

Hallo

a) mit wiederspruchsbeweis, nimm an es gäbe mindestens eine zweite Zerlegung.

b) probier es im R2 oder R3 dann siehst du wie es läuft,

lul

Ein anderes Problem?

Stell deine Frage