H(−2∣3),T(1∣−4)
f(x)=ax3+bx2+cx+d
f′(x)=3ax2+2bx+c=0
3a(x+2)∗(x−1)=3ax2+3ax−6a
b=3/2a;c=−6a
f(x)=ax3+3/2ax2−6ax+d
f(−2)=−8a+6a+12a+d=3
10a+d=3
f(1)=a+3/2a−6a+d=−4
−7/2a+d=−4
27/2a=7
a=14/27;b=21/27;c=−84/27
d=3−10a=3−140/27=59/27
f(x)=14/27x3+21/27x2−84/27x+59/27