0 Daumen
130 Aufrufe

Aufgabe:

Der Kernradius eines Aluminium-Atoms beträgt: 3.9*10-15m und der Atomradius beträgt 143 pm (1,43*10-10m)

Wie groß ist der Anteil des Kernvolumens am Atomvolumen?


Laut Lösung beträgt das Kernvolumen: 2,48*10-43  m

und das Atomvolumen:1,22*10-29 m3

von

4 Antworten

+1 Daumen
 
Beste Antwort

Aloha :)

Du brauchst die beiden Volumina nicht explizit zu berechnen, weil ja nur nach dem Verhältnis gefragt ist.

Der Kernradius ist \(r=3,9\cdot10^{-15}\,\mathrm m\).

Der Atomradius ist \(R=1,43\cdot10^{-10}\,\mathrm m\).

Das Verhätnis der beiden Volumina zueinander ist:

$$\rho=\frac{V_{\text{Kern}}}{V_{\text{Atom}}}=\frac{\frac43\pi\,r^3}{\frac43\pi\,R^3}=\frac{\cancel{\frac43\pi}\,r^3}{\cancel{\frac43\pi}\,R^3}=\left(\frac rR\right)^3=\left(\frac{3,9\cdot10^{-15}\,\mathrm m}{1,43\cdot10^{-10}\,\mathrm m}\right)^3=\left(\frac{3,9\cdot10^{-5}}{1,43}\right)^3$$$$\phantom{\rho}\approx2,03\cdot10^{-14}$$

von 84 k 🚀

Wie immer bedanke ich mich herzlichst für den verständlichen Lösungsweg :)

0 Daumen

Es gibt da so eine Formel für das Volumen einer Kugel, wenn der Radius der Kugel bekannt ist.

von 30 k
0 Daumen

Die Volumina verhalten sich zu einander wie die dritten Potenzen

der Radien.

von 3,9 k
0 Daumen

Vk/Va =  (4/3r^3*pi)/(4/3R^3*pi) = r^3/R^3

(3,9*10^-15)^3/(1,43*10^-10)^3 = 3,9^3*10^-45/1,43^3*10^-30 = 20,29*10^-15 = 2,03*10^-14 = 2,03*10^-12%

von 66 k 🚀

Und nicht in allen Berechnungsvarianten. :)

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community