Aloha :)
I1=∫x(1+x2)(1+x)2dx=∫x(1+x2)1+2x+x2dx=∫(x(1+x2)2x+x(1+x2)1+x2)dxI1=∫(1+x22+x1)dx=2arctan(x)+ln∣x∣+C
I2=∫xx−1dx=∫(xx−x1)dx=∫x−21dx−∫x1dx=21x21−ln∣x∣+CI2=2x−ln∣x∣+C
I3=∫1+x2x4dx=−∫1+x2−x4dx=−∫1+x21−x4−1dx=−∫(1+x21−x4−1+x21)dxI3=−∫(1+x2(1+x2)(1−x2)−1+x21)dx=−∫(1−x2)dx+∫1+x21dxI3=3x3−x+arctan(x)+C