0 Daumen
494 Aufrufe

Aufgabe:

Zeigen Sie, dass der arithmetische Mittelwert b = x mit Dach die quadratischen Abstände der empirischen Varianz


f(b) = \( \sum\limits_{i=1}^{N}{(xi - b)^2} \) minimiert.  Beim xi handelt es sich um das xi,es lässt sich nicht mit der Formel darstellen.


Ich habe leider gar keinen Ansatz, wie ich es lösen könnte, kann mir jemand helfen?

Avatar von

1 Antwort

0 Daumen

Aloha :)

Die Extremwerte der Funktion$$f(b)=\sum\limits_{i=1}^N(x_i-b)^2=\sum\limits_{i=1}^N(x_i^2-2bx_i+b^2)$$müssen wir dort suchen, wo die Ableitung verschwindet:$$0\stackrel!=f'(b)=\sum\limits_{i=1}^N(-2x_i+2b)=-2\sum\limits_{i=1}^Nx_i+2\sum\limits_{i=1}^Nb=-2\sum\limits_{i=1}^Nx_i+2Nb\quad\bigg|-2Nb$$$$-2Nb=-2\sum\limits_{i=1}^Nx_i\quad\bigg|\div(-2N)$$$$b=\frac1N\sum\limits_{i=1}^Nx_i=\overline x$$

Für \(b=\overline x\) wird \(f(b)\) tatsächlich extremal.

Wir prüfen noch mit Hilfe der 2-ten Ableitung, ob tatsächlich ein Minimum vorliegt:$$f''(b)=\sum\limits_{i=1}^N2=2N>0\implies\text{Minimum}$$

Avatar von 148 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community