0 Daumen
436 Aufrufe

Aufgabe:

Bestimmen Sie die Richtungen, in denen die Funktion bei (0,0) differenzierbar ist:

f: ℝ2 → ℝ: (x,y) ↦

f(x,y) = xyx2+y2 \frac{xy}{x^2+y^2} , wenn (x,y) ≠ 0

oder

f(x,y) = 0 wenn (x,y) = 0

Avatar von

1 Antwort

0 Daumen

Ok. Also du musst die Definition anwenden und dir einen allgemeinen Richtungsvektor festlegen, du wirst dann merken, dass für alle Richtungen v=(r, s)  mit r, s ungleich 0 die Richtungsableitung nicht existiert. Aber wenn du s oder r  0 setzt schon

Avatar von 1,7 k

Genau,

wenn r = 0 oder s = 0 dann existiert die Richtungsableitung.

(0,s) und (r,0) sind die Vektoren, aber diese müssen ja auch Einheitsvektoren sein also funktioniert das nur für s = 1 oder -1 und r = 1 oder -1


Sind dann

(0,1)

(0,-1)

(1,0)

(-1,0)

die Richtungen in die Funktionen in dem Punkt differenzierbar ist?

Jaa wenn du es über die Einheitsvektoren beschreiben willst, dann passt das.

Ein anderes Problem?

Stell deine Frage