\(\begin{aligned} \operatorname{E}(X) & =\int\limits _{-\infty}^{\infty}x\cdot f(x)\,\mathrm{d}x\\ & =\int\limits _{-\infty}^{0}x\cdot f(x)\,\mathrm{d}x+\int\limits _{0}^{1}x\cdot f(x)\,\mathrm{d}x+\int\limits _{1}^{\infty}x\cdot f(x)\,\mathrm{d}x\\ & =\int\limits _{-\infty}^{0}x\cdot0\,\mathrm{d}x+\int\limits _{0}^{1}x\cdot2x\,\mathrm{d}x+\int\limits _{1}^{\infty}x\cdot0\,\mathrm{d}x\\ & =0+\int\limits _{0}^{1}x\cdot2x\,\mathrm{d}x+0\\ & =\int\limits _{0}^{1}2x^{2}\,\mathrm{d}x \end{aligned}\)