0 Daumen
133 Aufrufe

Gegeben ist die Funktion f mit f(x)=0,1*(x+1)2*(x-a)*(x2-144).

a) Beschreiben Sie Anzahl, Lage und Art der Nullstellen von f in Abhängigkeit von a.

b) Setzen Sie nun a=0 und geben Sie die gemeinsamen Punkte des Schaubilds mit den Koordinatenachsen und die Hoch- und Tiefpunkte an.Runden Sie auf 2 Dezimalen.

Gefragt von

1 Antwort

0 Daumen

zu a)

f ( x ) = 0,1 * ( x + 1 ) 2 * ( x - a ) * ( x 2 - 144)

= 0,1 * ( x + 1 ) 2 * ( x - a ) * ( x - 12 ) * ( x + 12 )

 

1) Für a <> - 1 und a <> - 12 und a <> 12 hat f ( x ) vier Nullstellen, nämlich:
Jeweils eine einfache Nullstelle bei x = a , x = 12 und bei x = - 12 sowie eine doppelte Nullstelle bei x = - 1 ( geradzahlige mehrfache Nullstelle => Berührpunkt mit der x-Achse)

2) Für a = - 1 hat f ( x ) drei Nullstellen, nämlich:
Jeweils eine einfache Nullstelle bei  x = 12 und bei x = - 12 sowie eine dreifache Nullstelle bei x = - 1 (ungeradzahlige mehrfache Nullstelle => Sattelpunkt auf der x-Achse)

3) Für a = - 12 hat f ( x ) drei Nullstellen, nämlich:
Jeweils eine doppelte Nullstelle bei x = - 1 und x = - 12 sowie eine einfache Nullstelle bei  x = 12

4) Für a = 12 hat f ( x ) drei Nullstellen, nämlich:
Jeweils eine doppelte Nullstelle bei x = - 1 und x = 12 sowie eine einfache Nullstelle bei  x = - 12

 

zu b) Für a = 0 gilt a 1), also hat f ( x ) für a = 0 vier Nullstellen, nämlich jeweils eine einfache Nullstelle bei x = 0 , x = 12 und bei x = - 12 sowie eine doppelte Nullstelle bei x = - 1 ( geradzahlige mehrfache Nullstelle => Berührpunkt mit der x-Achse).

Die Schnittpunkte mit der x-Achse sind:

Sx1 ( -12 | 0 ) , Sx2 ( -1 | 0 ) , Sx3 ( 0 | 0 ) (gleichzeitig auch Schnittpunkt mit der y-Achse)  , Sx4 ( -12 | 0 )

 

Extrempunkte liegen höchstens dort vor, wo gilt:

f ' ( x ) =  0

Multipliziert man f ( x ) aus und leitet ab, so erhält man:

f ' ( x ) = 0,1 * 5 x 4 + 8 x 3 - 429 x 2 - 576 x - 144

Eine Nullstelle hiervon muss x1 = - 1 sein, da f ( x ) an dieser Stelle eine doppelte Nullstelle hat (Berührpunkt mit der x-Achse) und daher dort auch einen Extrempunkt haben muss.

Polynomdivision von f ' ( x ) : ( x + 1 ) ergibt:

0,1 * ( 5 x 4 + 8 x 3 - 429 x 2 - 576 x - 144 ) : ( x + 1 ) = 0,1 * ( 5 x 3 + 3 x 2 - 432 x - 144 )

Das Polynom 5 x 3 + 3 x 2 - 432 x - 144 hat leider keine ganzzahligen Nullstellen mehr, so dass sich die Nullstellenbestimmung als etwas schwierig erweist. Man wird mit einem numerischen Verfahren die Nullstellen annähern müssen. Ich habe das allerdings WolframAlpha erledigen lassen und das hat als weitere Nullstellen geliefert (auf zwei Dezimalen gerundet):

x2 = - 9,43

x3 = - 0,33

x4 = 9,17

Die entsprechenden Funktionswerte möge der Fragesteller durch Einsetzen dieser Werte in die Funktion f ( x ) selber ermitteln.

Beantwortet von 32 k  –  ❤ Bedanken per Paypal

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage sofort und kostenfrei

x
Made by a lovely community
...