0 Daumen
330 Aufrufe

folgende Gleichung:

 

34x+1 = 2 * 4x

mit dem log kann ich das so ja nciht berechnen. muss ich da zuerst auf die gleiche basis bringen?

von

4 Antworten

+2 Daumen
 
Beste Antwort
Hi elisa,

gehe so vor:


3^{4x+1} = 2*4^x

3^{4x}*3 = 2*4^x

81^x*3 = 2*4^x        |:4^x :3, bedenke a^x/b^x = (a/b)^x

(81/4)^x = 2/3         |ln

x*ln(81/4) = ln(2/3)

x = ln(2/3)/(ln(81/4)) ≈ -0,1348


Grüße
von 134 k
ist zwar nicht von mir gefragt worden haben würde trotzdem gerne wissen wieso man die ^+1 weg macht und dann eine mal 3 ? wieso ist das so
Hi aznulove,

nachfragen ist immer erlaubt^^.


Das ist das Potengesetz a^{n+m} = a^n*a^m

Und bei uns eben 3^{4x+1} = 3^{4x}*3^1 = 3^{4x}*3


:)
0 Daumen

ja , man muss einen Ausdruck zur Potenz x auf der eine Seite finden und auf der anderen Seite ein Zahl.

34x+1 = 2 * 4x -> 34x * 3 = 2*4x -> (34)x *3 = 2*4x -> 3* (34)x / 4x = 2 -> (34)x / 4x = 2/3  -> (81/4)x = 2/3 nun beide Seite mit log zur Basis 81/4 ergibt als Lösung x = - 0,13313

von 5,4 k
Hi Bepprich,

Du scheinst Dich bei der Eingabe in den TR vertippt zu haben?

Abgesehen vom Ergebnis ist nämlich alles richtig :).
Hi Unkown,


ja ich habe mich vertippt, statt 0,6666666666667 habe ich einfach 0,67 eingetippt .-) Dein Ergebnis ist richtig.

Es kommt auf den Weg drauf an und vor allem dass Elisa es verstanden hat.
0 Daumen

34x+1 = 2 * 4x

ln( 3^{4x+1} = ln( 2 * 4^x ) = ln(2) + ln(4^x)
( 4 * x + 1 ) * ln (3 ) = ln ( 2 ) + x * ln ( 4 )
4 * x * ln(3) + ln ( 3 ) = ln ( 2 ) + x * ln ( 4 )
4 * ln ( 3 ) * x - ln ( 4 ) * x = ln ( 2 ) - ln ( 3 )
x * [ 4 * ln ( 3 ) - ln ( 4 ) ] =  ln ( 2 ) - ln ( 3 )
x = [ ln ( 2 ) - ln ( 3 ) ] / [  4 * ln ( 3 ) - ln ( 4 ) ]
x = -0.135
Probe
3^{4*-0.135+1} = 2 * 4^{-0.135}
1.658 =  1.658

Erscheint mir reichlich umständlich.
Das Ergebnis stimmt aber.

Bei Fehlern oder Fragen wieder melden.

mfg Georg
 

von 83 k
0 Daumen
Das Ergebnis müßte folgendes sein:


x  =  - ( Log(3/2) / Log(81/4) )
von
Sorry, die Antwort gibt es ja bereits.

Da hätte ich mir die Arbeit sparen können.

Ein anderes Problem?

Stell deine Frage

Ähnliche Fragen

0 Daumen
1 Antwort
0 Daumen
3 Antworten
0 Daumen
1 Antwort

Willkommen bei der Mathelounge! Stell deine Frage sofort und kostenfrei

x
Made by a lovely community
...