0 Daumen
339 Aufrufe

ich verstehe die Aufgabe leider nicht so ganz.

a,b∈ℝ, a<b

Begründen Sie, dass die Reihe

$$\sum _ { n = 1 } ^ { \infty } \frac { 1 } { n ( n - x ) }$$

auf (a,b) \ ℕ absolut und gleichmäßig konvergiert. Benutzen Sie, dass für n>2 die Ungleichung n-x>n/2 gilt für alle x∈(a,b). Und zeigen Sie, dass die Reihe nicht gleichmäßig konvergent ist auf ℝ \ ℕ.

Ich verstehe leider nicht so ganz, was a und b damit zu tun haben?

Kann mir bitte einer bei der Aufgabe helfen?

Danke

von

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community