(1/(x + 1) - 3/(x3 + 1) + 3/(x2 - x + 1))·(x - (2·x - 1)/(x + 1))
= (1/(x + 1) - 3/((x + 1)·(x2 - x + 1)) + 3/(x2 - x + 1))·(x - (2·x - 1)/(x + 1))
= ((x2 - x + 1)/((x + 1)·(x2 - x + 1)) - 3/((x + 1)·(x2 - x + 1)) + 3·(x + 1)/((x + 1)·(x2 - x + 1)))·(x - (2·x - 1)/(x + 1))
= ((x2 - x + 1) - 3 + 3·(x + 1))/((x + 1)·(x2 - x + 1))·(x - (2·x - 1)/(x + 1))
= (x2 + 2·x + 1)/((x + 1)·(x2 - x + 1))·(x - (2·x - 1)/(x + 1))
= (x2 + 2·x + 1)/((x + 1)·(x2 - x + 1))·(x·(x + 1)/(x + 1) - (2·x - 1)/(x + 1))
= (x2 + 2·x + 1)/((x + 1)·(x2 - x + 1))·(x·(x + 1) - (2·x - 1))/(x + 1)
= (x2 + 2·x + 1)/((x + 1)·(x2 - x + 1))·(x2 - x + 1)/(x + 1)
= (x + 1)2/((x + 1)·(x2 - x + 1))·(x2 - x + 1)/(x + 1)
= ((x + 1)2)/((x + 1)) · 1/(x + 1)
= 1/1 · 1/1
= 1