0 Daumen
659 Aufrufe

Es soll der Flächeninhalt berechnet werden, der von der Sin(ax)-Kurve im Intervall 0 bis 1 eingeschlossen wird zuzüglich dem Flächeninhalt, der von der Kurve 1/x2 im Intervall 1 bis unendlich eingeschlossen wird. Und diese Summe zweimal, weil die gleiche Figur symmetrisch auch unter der x-Achse vorhanden ist (soweit mal meine Interpretation der mir vorliegenden Skizze).

$$2\cdot \int_0^1 sin(ax)dx+ 2\cdot\int_1^{\infty}\frac {1}{x^2} dx= \frac {2-2\cdot cos(a)}{a}+2$$

Die ML sagt aber:

$$2 + \frac {4}{\pi}$$

Versteh' ich nicht, denn man kennt ja a nicht und kann daher die Winkelfunktionen auch nicht auswerten.

Avatar von

1 Antwort

+1 Daumen
 
Beste Antwort

Was immer ML ist.

Schau mal hier: https://www.wolframalpha.com/input/?i=integrate+sin%28a*x%29+from+x%…

Dein Resultat ist daher besser. - ohne jetzt die Skizze und Fagestellung zu sehen.

Avatar von 162 k 🚀

Hallo Lu,

Musterlösung meinte ich mit ML. ^^ Hier die Aufgabenstellung, damit Du es besser beurteilen kannst.

Bild Mathematik

Aha. Da kannst du ja dein a berechnen.

Gemäss Skizze liegt P(1,1) auf beiden Kurven. Daher muss sin(a*1) = 1 gelten.

Also a= π/2

Nun das in dein Resultat einsetzen. Nehme an, dass es nun klappt.

Ui, hätte mir auffallen müssen. -_-

Ich bin bei Winkelfunktionen etwas verwirrt, wenn blanke Zahlen und nicht Pi steht.

Danke Lu!

Ein anderes Problem?

Stell deine Frage