Hallo kann mir jemand weiterhelfen
Gesucht sind die Nullstellen des Polynoms
p=z^2+2iz-1-2i
in kartesischen Koordinaten. Hinweis: p-q-Formel oder quadratische Ergänzung
Vielen Dank
0 =z2+2iz-1-2i | quadratische Ergänzung
0 = ( z^2 + 2iz + i^2 - i^2 ) - 1 -2i
0 = ( z+i)^2 - i^2 - 1 - 2i
0 = (z+i)^2 + 1 - 1 - 2i
2i = (z+i)^2
Nebenrechnung: (1+i)^2 = 1 + 2i - 1 = 2i , ebenso (-1-i)^2 = (1+i)^2 = 2i
± (1+i) = z+i
- i ± (1+i) = z_(1,2)
z_(1) = - i + 1 + i = 1
z_(2) = -i - (1+i) = - i - 1 - i = -1 -2i
Ein anderes Problem?
Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos