a/(2·(a + b)) - b/(3·(a - b)) + a·b/(a2 - b2)
= a/(2·(a + b)) - b/(3·(a - b)) + a·b/((a + b)·(a - b))
= 3·a·(a - b)/(6·(a + b)·(a - b)) - 2·b·(a + b)/(6·(a + b)·(a - b)) + 6·a·b/(6·(a + b)·(a - b))
= (3·a·(a - b) - 2·b·(a + b) + 6·a·b)/(6·(a + b)·(a - b))
= (3·a2 - 3·a·b - 2·a·b - 2·b2 + 6·a·b)/(6·(a + b)·(a - b))
= (3·a2 + a·b - 2·b2)/(6·(a + b)·(a - b))
= ((a + b)·(3·a - 2·b))/(6·(a + b)·(a - b))
= (3·a - 2·b)/(6·(a - b))