Ohne Substitution:
\(49^{x}-8\cdot 7^{x-1}=-7^{-1}\)
\(7^{2x}-\frac{8}{7}\cdot 7^{x}=-\frac{1}{7}\) quadratische Ergänzung:
\(7^{2x}-\frac{8}{7}\cdot 7^{x}+(\frac{4}{7})^{2}=-\frac{1}{7}+(\frac{4}{7})^{2}\) 2.Binom:
\((7^{x}-\frac{4}{7})^{2}=\frac{9}{49} |±\sqrt{~~}\)
1.)
\(7^{x}-\frac{4}{7}=\frac{3}{7} \)
\(7^{x}=\frac{7}{7}=1 \)
\(x_1=0\)
2.)
\(7^{x}-\frac{4}{7}=-\frac{3}{7} \)
\(7^{x}=\frac{1}{7}=7^{-1} \)
\(x_2=-1\)