0 Daumen
2,6k Aufrufe

Gegeben ist die Funktion f(x)= (2x-4) mal e hoch 1-0,5x. Führen sie eine Kurvendiskussion durch.

a) Nullstellen, Extrema, Wendepunkte

b) unendlichkeitsverhalten

c) Graph von f für 0 < x<8

f(x)= (2x-4)* e1-0,5x

Avatar von

Kurvendiskussion durchführen?

Halte dich an die Punkte, die https://www.mathelounge.de/407533/wie-macht-man-eine-kurvendiskussio… abgearbeitet werden, wenn du in deinen Unterlagen keine anderen Angaben hast.

1 Antwort

0 Daumen

Funktion & Ableitungen

f(x) = e1 - x/2·(2·x - 4)

f'(x) = e1 - x/2·(4 - x)

f''(x) = e1 - x/2·(x/2 - 3)

Verhalten im Unendlichen

lim (x --> -∞) f(x) = -∞

lim (x --> ∞) f(x) = 0

Nullstellen f(x) = 0

2·x - 4 = 0 --> x = 2

Extrempunkte f'(x) = 0

4 - x = 0 --> x = 4

f(4) = 4/e = 1.472 --> HP(4 | 1.472)

Wendepunkte f''(x) = 0

x/2 - 3 = 0 --> x = 6

f(6) = 8/e2 = 1.083 --> WP(6 | 1.083)

Graph

Plotlux öffnen

f1(x) = (2x-4)·e1-0,5xZoom: x(-1…9) y(-12…3)


Avatar von 493 k 🚀

Ein anderes Problem?

Stell deine Frage