0 Daumen
92 Aufrufe

Ich brächte mal die Hilfe von einem der gut im Zusammenfassen von Termen ist. Ich benötige folgende Ableitung f´(x) f´´(x) f`(x) von (1+sin(x))^{1/2}

für f(x)`= kommt wenn man es gut zusammenfasst anscheinen auf -1/8(1-sin(x))^{1/2}. Ich komme auf die richtigen Ableitungen aber die sind alles andere als kompakt. Was ein Restgliedabschätzung über Largrange so gut wie unmöglich macht. f´(x) oder ein Tipp wie man dahin kommt und die Ableitungen kompakt hält wäre sehr hilfreich.

von

1 Antwort

+1 Daumen
 
Beste Antwort

Hallo albi,

etwas Kompakteres kann ich dir leider nicht anbieten:

f(x)  =  √( sin(x) + 1) 

f '(x)   =  COS(x) / (2·√(SIN(x) + 1))

f "(x)   =  - √(SIN(x) + 1) / 4

f '''(x)  =    - COS(x) / (8·√(SIN(x) + 1))

Gruß Wolfgang

von 85 k 🚀

ok vielen Dank das reicht. Restgliedabschätzung hat damit geklappt. Meine 3. Ableitung war deutlich größer. 

Ein anderes Problem?

Stell deine Frage

Ähnliche Fragen

0 Daumen
0 Antworten
0 Daumen
1 Antwort
Gefragt 19 Sep 2020 von musik125

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community