0 Daumen
88 Aufrufe

Ich weiß leider nicht, wie ich mit dem alpha umgehen soll.

Berechne zu y=(1+x)^α  die ersten 4 Glieder der Taylorreihe.

Entwicklungsmitte ist 0.

von

"ich weiß leider nicht, wie ich mit dem alpha umgehen soll."

Woher sollen wir das wissen? Was steht denn zu diesem alpha? Ist es eine reelle / natürliche / komplexe Konstante oder gar abhängig von x ? 

Ist y eine Funktion von x oder von alpha oder beidem? 

"Entwicklungsmitte ist 0." 

Entwicklungsmitte ist x= 0 ode alpha =0? 

Tipp:

https://de.m.wikipedia.org/wiki/Binomische_Reihe

Leite die Funktion mit der Potenzregel ab.

1 Antwort

0 Daumen

Hallo cb2255! :-)

$$(1+x)^\alpha = \sum_{k=0}^{\infty}\binom{\alpha}{k}x^k \\P_{3,0}(x)= \binom{\alpha}{0}x^0 + \binom{\alpha}{1}x^1 + \binom{\alpha}{2}x^2 + \binom{\alpha}{3}x^3 = \\ 1 + \alpha x + \frac{\alpha(\alpha-1)}{2} + \frac{\alpha(\alpha-1)(\alpha-2)}{6}$$

Bsp.: α = 0.65

Bild Mathematik

Beste Grüße
gorgar


von 11 k

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage sofort und kostenfrei

x
Made by a lovely community
...