0 Daumen
490 Aufrufe

Gegeben ist die Funktion \(f_1\) mit der Gleichung:
$$ f_1(x) = \dfrac 14\cdot x^3 -3\cdot x.$$Die Abbildung zeigt die Graphen der Funktion \(f_1\) und ihrer ersten Ableitung \(f_1'=f_2\).

~plot~ 1/4*x^3-3*x; 3/4*x^2-3; [[ -4.5 | 4.5 | -4.5 | 4.5 ]] ~plot~

Der Graph der Funktion \(f_1\) hat in zwei Punkten \(P\) und \(Q\) Tangenten, die parallel zur Geraden durch die beiden Extrempunkte von \(f_1\) verlaufen.

Bestimmen Sie die Punkte \(P\) und \(Q\) zeichnerisch(!) unter Verwendung der beiden Graphen aus der Abbildung. Beschreiben Sie Ihr Vorgehen.

(Diese alte – stark gekürzte – Klausuraufgabe richtet sich an Schüler des ersten Jahres der Sekundarstufe II, also Jahrgangsstufe 10 bzw. 11, je nach Schulform.)

Avatar von 27 k

1 Antwort

0 Daumen

Hallo

1. Schritt Steigung der Geraden durch die 2 Punkte (-2,4) und (2,-4) ist ? m=?

2. Schritt auf f2 ,also der Ableitung , den x wert bei f2(x)=m ablesen , dann hat man x1 und x2 also die Stellen bei denen in f1 die Steigung m ist.die Tangenten gehen  also durch (x1,f1(x1)) und (x2,f1(x2))

Gruß lul

Avatar von 108 k 🚀

Ja, sehr schön. Zum zweiten Schritt: Statt die x-Werte von f_2(x)=m abzulesen, ist es genauer und auch einfacher, Lote in den Schnittpunkten zu errichten und diese mit f_1 zu schneiden. Damit sind die Berührpunkte bereits, wie von der Aufgabenstellung gefordert, zeichnerisch(!) bestimmt. Die Koordinaten müssen ja nicht ermittelt werden.

Ein anderes Problem?

Stell deine Frage

Ähnliche Fragen

2 Antworten
2 Antworten
Gefragt 13 Mär 2018 von Gast
2 Antworten

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community